Eye-head coordination during head-unrestrained gaze shifts in rhesus monkeys.
نویسندگان
چکیده
We analyzed gaze shifts made by trained rhesus monkeys with completely unrestrained heads during performance of a delayed gaze shift task. Subjects made horizontal, vertical, and oblique gaze shifts to visual targets. We found that coordinated eye-head movements are characterized by a set of lawful relationships, and that the initial position of the eyes in the orbits and the direction of the gaze shift are two factors that influence these relationships. Head movements did not contribute to the change in gaze position during small gaze shifts (<20 degrees) directed along the horizontal meridian, when the eyes were initially centered in the orbits. For larger gaze shifts (25-90 degrees), the head contribution to the gaze shift increased linearly with increasing gaze shift amplitude, and eye movement amplitude saturated at an asymptotic amplitude of approximately 35 degrees. When the eyes began deviated in the orbits contralateral to the direction of the ensuing gaze shift, the head contributed less and the eyes more to amplitude-matched gaze shifts. The relative timing of eye and head movements was altered by initial eye position; head latency relative to gaze onset increased as the eyes began in more contralateral initial positions. The direction of the gaze shift also affected the relative amplitudes of eye and head movements; as gaze shifts were made in progressively more vertical directions, eye amplitude increased and head contribution declined systematically. Eye velocity was a saturating function of gaze amplitude for movements without a head contribution (gaze amplitude <20 degrees). As head contribution increased with increasing gaze amplitude (20-60 degrees), peak eye velocity declined by >200 degrees/s and head velocity increased by 100 degrees/s. For constant-amplitude eye movements (approximately 30 degrees), eye velocity declined as the velocity of the concurrent head movement increased. On the basis of these relationships, it is possible to accurately predict gaze amplitude, the amplitudes of the eye and head components of the gaze shift, and gaze, eye, and head velocities, durations and latencies if the two-dimensional displacement of the target and the initial position of the eyes in the orbits are known. These data indicate that signals related to the initial positions of the eyes in the orbits and the direction of the gaze shift influence separate eye and head movement commands. The hypothesis that this divergence of eye and head commands occurs downstream from the superior colliculus is supported by recent electrical stimulation and single-unit recording data.
منابع مشابه
Eye, head, and body coordination during large gaze shifts in rhesus monkeys: movement kinematics and the influence of posture.
Coordinated movements of the eye, head, and body are used to redirect the axis of gaze between objects of interest. However, previous studies of eye-head gaze shifts in head-unrestrained primates generally assumed the contribution of body movement to be negligible. Here we characterized eye-head-body coordination during horizontal gaze shifts made by trained rhesus monkeys to visual targets whi...
متن کاملDo extraocular motoneurons encode head velocity during head-restrained versus head-unrestrained saccadic and smooth pursuit movements?
Microstimulation experiments in the superior colliculus1 and single-unit recordings from its target, the premotor saccadic burst neurons2 (SBNs, located in the paramedian pontine reticular formation), have shown that the saccadic burst generator encodes head as well as eye movements during head-unrestrained gaze shifts. There is also evidence suggesting that premotor circuits likely encode eye ...
متن کاملHead-unrestrained gaze shifts after muscimol injection in the caudal fastigial nucleus of the monkey.
The effects of unilateral cFN inactivation on horizontal and vertical gaze shifts generated from a central target toward peripheral ones were tested in two head unrestrained monkeys. After muscimol injection, the eye component was hypermetric during ipsilesional gaze shifts, hypometric during contralesional ones and deviated toward the injected side during vertical gaze shifts. The ipsilesional...
متن کاملNeural mechanisms for predictive head movement strategies during sequential gaze shifts.
Humans adopt very different head movement strategies for different gaze behaviors, for example, when playing sports versus watching sports on television. Such strategy switching appears to depend on both context and expectation of future gaze positions. Here, we explored the neural mechanisms for such behaviors by training three monkeys to make head-unrestrained gaze shifts toward eccentric rad...
متن کاملHead-unrestrained gaze adaptation in the rhesus macaque.
The ability to adjust the amplitude of gaze shifts in response to persistent visual errors ("gaze adaptation") has been investigated primarily by introducing visual errors at the end of saccades produced by head-restrained primates. Very little is known about the behavior and neural mechanisms underlying gaze adaptation when the head is free to move. We tested alternative hypotheses about the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 77 5 شماره
صفحات -
تاریخ انتشار 1997